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Problems facing group autonomy 

• Autonomy focus is on single unit control 

• Focus is on centralized controllers (prone to 

failure/attack) 

• Autonomy frameworks tend to be targeted at 

homogeneous platforms and algorithms 

• Blocking communications are prone to 

faults/attacks/outages/loss-of-control 

• GPS is highly inaccurate for precise maneuvers 

• Lack of standardization for autonomous 

collaboration 

Intro MADARA GAMS Conclusion 
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Our Approach to Group 

Autonomy 

1. Create a portable, open-sourced, 

decentralized operating environment for 

autonomous control and feedback. Focus 

on scalability, performance and 

extensibility 

2. Integrate the operating environment into 

unmanned autonomous systems (UAS), 

platforms, smartphones, tablets, and other 

devices. Focus on portability. 

3. Design algorithms and tools to perform 

mission-oriented tasks like area coverage 

and network bridging between squads 

4. Design user interfaces to help single 

human operators control and understand a 

swarm of UAS, devices, and sensors 

(human-on-the-loop autonomy) 

Intro MADARA GAMS Conclusion 
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FY 2015 Technologies/Platforms 

We are investigating several platforms and 

collaborations this year, including: 

• UAVs (Parrot and 3D Robotics) 

• Autonomous Boats (Paul Scerri—CMU) 

• Micro-UAVs (Vijay Kumar—UPenn GRASP) 

• Flood sensors (Anthony Rowe, Huntingdon 

County EMS) 

• Throwables (Bounce Imaging), 

Smartphones, Tablets (Android) 

• High precision and gps-denied positioning 

Intro MADARA GAMS Conclusion 
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Principles of our open-sourced middleware (MADARA and 

GAMS) 

1. Be useful to application developers 

2. Enable distributed, decentralized artificial intelligence 

3. Be fast, small, and capable 

4. Be portable to as many platforms relevant to UAS as possible 

5. Be extensible to facilitate new transports, linking with external libraries, 

security, assurance, and consistency 

6. Provide extensive documentation 

Intro MADARA GAMS Conclusion 
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Key MADARA Features (2009-present) 

• Allows developers to write both state-based and event-based programs 

(or combinations of both) for distributed artificial intelligence 

• Programs can react to receive, send, or rebroadcast events 

• Programs can have deadline-enforced periodic executions, wait for 

certain state-based conditions to come true, or execute efficient, 

dynamic actions in KaRL (Knowledge and Reasoning Language) 

• Allows developers to script (KaRL) or utilize object-oriented 

programming to codify their algorithms and applications 

• Supports C++, Java, Python, ARM, Intel, Windows, Linux, Android, iOS 

• Supports IP multicast, broadcast, unicast, OMG DDS transports 

• Enforces consistency of updates through Lamport clocks, priorities 

• Extensible transport layer, filtering system, and callbacks 

• Extensive documentation (guides, tutorials, doxygen) 

Intro MADARA GAMS Conclusion 
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MADARA Architecture 

More information, tutorials, and documentation at http://madara.googlecode.com 
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GAMS Architecture (FY 2014) 

1. Built directly on top of MADARA 

2. Utilizes MAPE loop (IBM autonomy construct) 

3. Provides extensible platform, sensor, and algorithm support 

4. Uses new MADARA feature called containers, which support object-oriented 

programming of the Knowledge Base 
 

Intro MADARA GAMS Conclusion 
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GAMS Architecture (FY 2014) 
 

Key points: 

• During the MAPE loop, the context is locked from external updates 

• At the end of the MAPE loop, all global variable changes are aggregated 

together and sent to other UAS participating in the mission 

Intro MADARA GAMS Conclusion 
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GAMS Platform and Algorithm Interactions 
 

The Monitor, Plan, and Execute phases are pretty straight-forward 

Intro MADARA GAMS Conclusion 
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GAMS Platform and Algorithm Interactions 
 

During the analyze phase: 

1. The platform analyzes its state and informs the rest of the GAMS system via 

MADARA variables 

2. The system analyzes the platform and environment for algorithm changes 

3. The algorithm then analyzes its state and sets appropriate MADARA variables. 

Intro MADARA GAMS Conclusion 
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GAMS Platform and Algorithm Interactions 
 

About system_analyze (): 

1. The platform can inform the control loop of gps-spoofing, if it has capabilities 

2. Check_gps () is also intended to implement gps-spoof checking in software 

3. Environmental or platform characteristics can result in changes to the platform 

(e.g., an arm is damaged) or algorithm (e.g., the UAS should return home) 

Intro MADARA GAMS Conclusion 
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How to use GAMS with new platforms and algorithms 

1. Extend the platform base class 

• Implement move (), land (), takeoff (), or other functions 

• Implement sense () 

• Implement analyze () 

2. Extend the algorithm base class 

• Implement analyze () 

• Implement plan () 

• Implement execute () 

3. Extend the base controller class (optional) 

• Override MAPE methods 

4. Use the parameterized Mape_Loop class (optional) 

• Use the define_monitor, define_analyze, etc. methods with MADARA 

functions 

Intro MADARA GAMS Conclusion 
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What exactly are we solving? 

1. MADARA is a bit expansive in its capabilities and developers can find 

themselves pulled in many different directions when thinking of autonomy to 

implement. GAMS provides an interface for algorithms and platforms 

to be added and utilized within a wireless environment 

2. GAMS provides mechanisms for tracking platform and algorithm 

states and characteristics, such as detection of GPS-spoofing, 

blocked/deadlocked conditions within algorithms, low battery, degraded 

sensors, etc. 

3. While MADARA may support any type of distributed artificial intelligence 

paradigm, GAMS provides a stable, consistent framework for group 

autonomous behaviors and may prove beneficial to standardization 

efforts for group autonomy  

Intro MADARA GAMS Conclusion 
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Future Work 

Though we have great partners and stakeholders, we do have hardware and other 

research that we would love to focus on in FY 2015 and 2016 

• Other gps-denied localization systems 

• Vision (have discussed aspects of this with Dr. Davide Scaramuzza at 

University of Zurich and Dr. Marios Saviddes of CMU) 

•  Acoustic (Anthony Rowe of CMU) 

• Accent/Augmentation algorithms 

• Focus on control loops and structures that allow for secondary algorithms to run 

in parallel to accomplish autonomous functions without interfering with primary 

algorithms 

• Formal verification of complex, asynchronous distributed applications and 

algorithms 

Intro MADARA GAMS Conclusion 
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Closing remarks 

In this talk, we’ve discussed 

• A distributed reasoning engine called MADARA that provides portable, fast 

reasoning services for distributed artificial intelligence 

• An extensible framework called GAMS for distributed algorithms and platforms 

that enables Monitor-Analyze-Plan-Execute-based distributed autonomous systems 

• A model-checked code compiler and prototype generator called MCDA for 

distributed applications 

Intro MADARA GAMS Conclusion 
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FY 2014 Open Source Release 

The algorithms, tools, and middleware created at 

SEI are released via BSD-style licenses through 

the following projects: 

• Multi-Agent Distributed Adaptive Resource 

Allocation (MADARA) for the distributed OS 

layer: http://madara.googlecode.com 

• Group Autonomy for Mobile Systems (GAMS) 

for the algorithms and UIs: http://gams-

cmu.googlecode.com 

• Model Checking for Distributed Applications 

(MCDA) http://mcda.googlecode.com 

• Drone-RK for the UAV device drivers: 

http://www.drone-rk.org 

• Contact: jredmondson@sei.cmu.edu 
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